IMPROVEMENTS TO FREEZE-THAW, SALT-SCALING & WATER RESISTANCES OF MASONRY MORTARS

CHAD LAUSBERG DIRECTOR OF TECHNICAL SERVICES EDISON COATINGS, INC.

©2022-3, Edison Coatings, Inc.

WATER REPELLENT • SILANE/SILOXANE EMULSION (10% Solids) • SILANE CREAM (80% Solids) AIR ENTRAINMENT • ASTM C226 ADDITION

COMMON APPROACHES FREEZE-THAW IMPROVEMENT POLYMER MODIFICATION • PROPRIETARY ACRYLIC LATEX W/WET ADHESION MONOMER • ALTERNATIVE POLYMERS

Northwest Tower East Block Parliament Hill Ottawa

2012-13: FREEZE-THAW FAILURE IN 1ST WINTER

TYPE O MORTAR

- 1 Portland Cement
- 2.5 Type SA Lime

8 Sand

EDISON POLYMER MODIFICATION STUDY

1:2.5:8 TYPE O MORTAR COMPRESSIVE STRENGTH ASTM C109

Mortar Mix	Sample	Cure Method Compressive Strength (psi)		Average (psi)	
	1	10-Day Damp	725		
1.1.5.0	2 10-Day Damp		600	658	
1:2.5:8 Non	3	10-Day Damp	650		
Non- Modified	4	18-Day Damp	800		
Wouned	5	18-Day Damp	700	758	
	6	18-Day Damp	775	/50	
	2	7 Air + 3 Damp	750	775	
1:2.5:8	3	7 Air + 3 Damp	800	775	
Modified	4	7 Air + 11 Damp	850		
	5	7 Air + 11 Damp	850	850	
	6	7 Air + 11 Damp	850		

~12% STRENGTH INCREASE

EDISON POLYMER MODIFICATION STUDY

1:2.5:8 TYPE O MORTAR

WATER VAPOR TRANSMISION ASTM E96

Mortar Mix	Sample	Vapor Transmission (g/in^2/hr)		
1:2.5:8	1	0.0939		
	2	0.1080		
Modified	3	0.0920		
Woulled	Average	0.0979		
1:2.5:8 Modified	1	0.0745		
	2	0.0731		
	3	0.0716		
	Average	0.0730		

~75% PERMEABILITY RETAINED

EDISON POLYMER MODIFICATION STUDY

1:2.5:8 TYPE O MORTAR

WATER ABSORPTION

Mortar Mix	Time(min)	Cure Method	Water Absorption (g/100 cm^2)	Water Absorption (%)
	initial	18-Day Damp	-	
	15	18-Day Damp	31.56	3.37
1250	60	18-Day Damp	61.2	6.53
1:2.5:8 Non Modified	120	18-Day Damp	81.44	8.69
Non-mouned	240	18-Day Damp	111.84	11.93
	360	18-Day Damp	132.48	14.13
	1440	18-Day Damp	138.2	14.74
	initial	7 Air + 11 Damp	•	-
	15	7 Air + 11 Damp	3.32	0.38
	60	7 Air + 11 Damp	6.24	0.72
1:2.5:8 Modified	120	7 Air + 11 Damp	8.2	0.94
Wounied	240	7 Air + 11 Damp	11.08	1.27
	360	7 Air + 11 Damp	13.84	1.59
	1440	7 Air + 11 Damp	15.96	2.87

~80% REDUCTION IN ABSORPTION

ASTM C666 (Modified): Resistance of Concrete to Rapid Freeze-Thaw

- AMERICAN NATURAL CEMENT AND SAND
- = 1:1, 1:1.5, AND 1:2
- = 28 DAY CURE (95% RH)
- 16 HRS AT -18°C (0
 °F) AND 8 HRS AT
 22°C (72 °F)

ASTM C672 (Modified): Scaling Resistance Of Concrete Surfaces Exposed To Deicing Chemicals

 6.35 mm (0.25 in) of 4% Calcium Chloride Solution

 18 hrs at -18°C
 (0 °F) and 6 hrs at 22°C (72 °F)

Mortars

Binder	Proportions	Modification	Cure Time
Portland/Lime	1:0.25:3.75 (M)	None	7
Portland/Lime	1:0.25:3.75 (M)	100% Liquid Polymer	7
Portland/Lime	1:1:6 (N)	None	7
Portland/Lime	1:1:6 (N)	88C Silane Cream	7
Portland/Lime	1:1:6 (N)	75% Liquid Polymer	7
Portland/Lime	1:2:9 (O)	50% Liquid Polymer	7
Portland/Lime	1:2:9 (O)	75% Liquid Polymer	7
Portland/Lime	1:2:9 (O)	100% Liquid Polymer	7
American Natural Cement	1:1	None	56
American Natural Cement	1:1	89W Siloxane	56
American Natural Cement	1:1	12% Air	28
American Natural Cement	1:1	100% Liquid Polymer	28
American Natural Cement	1:2	100% Dry Polymer	28
American Natural Cement	1:2	50% Liquid Polymer	28
American Natural Cement	1:2	100% Liquid Polymer	28
European Natural Cement	1:1	100% Liquid Polymer	28
NHL 3.5	1:2.5	None	28
NHL 3.5	1:2.5	88C Silane Cream	28
NHL 3.5	1:2.5	100% Liquid Polymer	28

ASTM C672: Scaling Ratings

Rating	Observations
0	No Scaling
1	Very Slight Scaling
2	Slight to Moderate Scaling
3	Moderate Scaling
4	Moderate to Severe Scaling
5	Severe Scaling

Type M – No Modification vs. 100% Liquid Polymer

	Freeze-Thaw Cycles	No Mod	100% LP
	5 10	2	0
	15	3	0
and Le.	25 27	4 5	0
	50	5	0

ASTM C67: Part 8 Absorption

- Cold Water Submersion 24 hrs at 22°C (72 °F)
- Boiling Water
 Submersion
 1 hr at 100°C (212 °F)
- Calculate Saturation
 Coefficient

SATURATION COEFFICIENT

A number between 0 and 1

- Reflects How Readily Water Is Absorbed by Comparing Cold Water Immersion vs. Boiling Water Immersion
- High Saturation Coefficient (Near 1)
 Indicates Rapid Cold Water
 Absorption and Vulnerability to
 Freeze-Thaw Damage
 - Exterior Brick Should Have Saturation Coefficient <0.8

Saturation Coefficient=

(cold weight-dry weight)
(boiling weight-dry weight)

ABSORPTION % (WEIGHT): COLD VS. BOIL

Mortar	Modification	Cold	Boil
True A	None	5%	5%
i ype ivi	100% LP	8%	17%
	None	9%	10%
туре м	75% LP	8%	32%
	50% LP	10%	35%
Туре О	75% LP	6.5%	35%
	100% LP	1%	13%
ANC 1.1	None	10%	10%
ANC 1.1	100% LP	3%	19%
ENC 1:1	100% LP	6.5%	23%
ANC 1:2	100% DP	15%	22%
NHL 3.5 100% LP		6.5%	19%

Mortar	Modification	SC	Cycles	Rating
	None	0.95	27	5
туре ім	100% LP	0.45	50	0
	None	0.90	10	5
туре м	75% LP	0.27	50	1
	50% LP	0.28	45	5
Туре О	75% LP	0.18	50	2
	100% LP	0.09	50	2
	None	0.96	3	5
ANC 1:1	12% A	0.85	10	5
	100% LP	0.16	50	1
ENC 1:1	100% LP	0.27	40	2
	100% DP	0.74	40	5
ANC 1:2	50% LP	0.57	50	2
	100% LP	0.49	50	1
	None	0.78	13	5
NHL 3.5	100% LP	0.33	50	1

Saturation Coefficient

THE UNEXPECTED: SATURATION COEFFICIENT VS. % AIR VS. SCALING

Mortar	Modification	SC	%Air	Cycles	Scaling Rating ASTM C672
	None	0.9	10.1	10	5
Туре м	75% LP	0.27	43	50	1
Туре О	75% LP	0.18	42.1	50	2
	None	0.96	2.9	3	5
	12% Air	0.85	12	10	5
ANC 1:1	75% LP (reduced air)	0.78	22.4	25	5
	100% LP	0.16	46	50	1
NHL 3.5	None	0.78	5.6	13	5
	100% LP	0.33	30	50	1

WET CURING?

Latex Modified Mortars Are DRY Curing

Library of Congress Jefferson Building Washington, DC

Russell Senate Office Building Washington, DC

LATEX-MODIFIED CEMENT TECHNOLOGY

Why Do We Use It?

- Increases Adhesion
 - Typically 2x 4x Higher
- > Improves Flexibility
 - > Typically 2x 3x Flexural Strength
- Lowers Shrinkage
 - > Up to 70% Reduction
 - > Eliminates Shrinkage Cracking
- Reduces Curing Requirements
 - 0 24 hrs (max.) Wet Curing
- Does Not Impair Breathability

MICROPHOTOGRAPH: LATEX MODIFIED MORTAR AFTER ACID DIGESTION

IMPLICATIONS

- Latex-Modification Does Not <u>ONLY</u> Improve Freeze-Thaw Resistance
 - Water Resistance
 - Salt Scaling Resistance
 - Bond Strength/Tensile Strength
 - "Flexibility"
 - Shrinkage
 - Volume Yield
- Latex-Modification Can Improve Mortar Performance in Difficult Exposure Areas
 - Copings
 - Water Tables
 - Stairways
 - Pavements
 - Marine

- May Allow Use of Mortar In Place of Sealants
- Can Overcome Deleterious Process Shortcuts
 Like Omital of Wet Curing
- Latex-Modified Natural Cement Mortars Can Be Applied Continuously, Rather Than In "Lifts"

ACKNOWLEDGEMENTS: • DFS ARCHITECTURE, MONTREAL • PWGSC • EDISON COATINGS, INC.

> RICHARD DOANE, Ch. E. CHAD LAUSBERG, Ch. E. ALAN WORREST, Ch.E.,

FERNANDO PELLICER MARC COTÉ, MGC HERITAGE MASONRY National Research Council, CANADA STAIRWAY AT U. S. CAPITOL BUILDING LATEX-MODIFIED MORTAR TEST AREA